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Theory of ion-temperature-gradient-driven turbulence in tokamaks
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(Received 30 January 1986; accepted 15 July 1986)

An analytic theory of ion-temperature-gradient-driven turbulence in tokamaks is presented.
Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain
the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-
length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity

x: =04[(#/2)In(1 + 7,) 1*[ (1 + 5,)/7)’p}c./L, is derived and is found to be consistent
with experimentally deduced thermal diffusivities. The associated electron thermal and particle
diffusivity, and particle and heat-pinch velocities are also calculated. The effect of impurity
gradients on saturated ion-temperature-gradient-driven turbulence is discussed and a related
explanation of density profile steepening during Z-mode operation is proposed.

1. INTRODUCTION

The search for an adequate understanding of energy
confinement in tokamaks has motivated theoretical and ex-
perimental research in plasma physics for a long time. Most
of this research effort has been oriented toward explaining
observed anomalies in electron thermal energy confinement,
while neoclassical transport theory has long been considered
adequate for calculating ion thermal conduction. However,
experimental results now suggest that significant anomalous
ion thermal transport may also occur.

In particular, recent experiments on the Alcator-C
tokamak-? indicate that when the plasma density is large
enough so that the electron—ion thermal equilibration time
(7.; ~ 1/n?) approaches (from above) the neo-Alcator elec-
tron thermal energy confinement time (rg,~n), significant
anomalous energy loss can occur through the ion conduction
channel. The onset of this loss process occurs while 7 begins
to saturate. Furthermore, it was also observed that the injec-
tion of large pellets and the subsequent steepening of the
plasma density gradient resulted in decreased ion thermal
conduction. Electron enegy confinement remained in the
neo-Alcator phase. This interesting result suggests that
peaked density profiles may be favorable to reduced ion ther-
mal conduction, and that an important relationship between
particle and energy confinement exists, in general.

This trend appears to extend into auxiliary heating re-
gimes, in spite of numerous complications in data analysis
and interpretation. In particular, neutral beam injection
(which directly heats ions) is nearly always accompanied by
a degradation in overall energy confinement and a weaken-
ing of the density dependence of the energy confinement
time 7, as it departs from that predicted by neo-Alcator
Ohmic regime scaling. Furthermore, recent charge ex-
change recombination spectroscopy experiments on the
D-III tokamak® during neutral beam injection have resulted
in direct measurements of the magnitude and radial profile
of the ion thermal conductivity y;(r). Substantial depar-
tures, in both magnitude and profile shape, from the neoclas-
sical y; prediction are indicated. Finally, the observed den-
sity profile broadening, particle confinement time (7,)
degradation, and density saturation (referred to as the “den-
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sity clamp”’), which frequently accompany the degradation
of 7z during cotangential injection, collectively reinforce the
suspicion that ion thermal transport is closely linked to par-
ticle transport and confinement.

Ion-temperature-gradient-driven turbulence, which
evolves from unstable ion-temperature-gradient modes (7,
modes, where 77, =d In T,/d In n), has been proposed as a
possible explanation of these results. Originally identified by
Coppi et al.,* the ion-temperature-gradient instability is an
electrostatic sound wave driven unstable by an ion-pressure
gradient. For 7, > n,. ~ 1.5, where 7,. denotes the critical
value of 77; necessary for instability, the dynamics probably
can be described using a simple fluid model where an adiaba-
tic electron response is neutralized by an ion
response determined by pressure (p;), parallel velocity
(3);), and vorticity equations. A growth rate
v~ [ (1 +9,)/7]"?k,p,c,/L,, where L, is the shear length,
c, is the sound speed, and p, is the ion gyroradius at the
electron thermal velocity, and a radial mode width
A, = [(1 +,)/7]"?p, are predicted. Approximate values
of the pressure fluctuation level are p;/p,~A,/L,, where L,
is the ion pressure scale length, and the thermal diffusivity
x:i~[(1+1,)/7]"%02¢,/L; can then be trivially deduced
using familiar “mixing-length rules.” The qualitative consis-
tency of the predicted y, with experimentally determined ion
thermal diffusivity values, the favorable scaling of y; with
density gradient (%, ~L, /Ly,), and the simplicity and com-
parative parametric insensitivity of the plasma model collec-
tively establish the ion-temperature-gradient mode as a very
promising candidate for explaining anomalous ion thermal
transport in tokamaks. Furthermore, extension of the simple
electrostatic sheared slab model to include the effects of tor-
oidicity, inductive electric fields, and nonadiabatic electron
dynamics probably does not lead to conclusions which differ
substantivally from those discussed above. Finally, it has
been observed that ion-temperature-gradient instability may
be enhanced by inverted impurity profiles and may drive an
anomalous inward particle flow.’

A quantitative understanding of the experimental ob-
servations requires a theory of saturated ion-temperature-
gradient-driven turbulence. The frequently invoked mixing-
length “rules” (i.e., p,/po~1/k.L,, D~y/k?) are neither
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quantitatively accurate nor necessarily even qualitatively
correct (i.e., see Ref. 6), and thus more careful analysis is
required. Previous investigations of ion-temperature-gradi-
ent-driven turbulence gave been primarily devoted to such
mixing-length estimates or simple extensions thereof. In par-
ticular, in Ref. 6 the anomalous ion thermal diffusivity and
inward particle flow velocity were calculated using a mixing-
length estimate (ed/T, ~1/k L,) of the electrostatic fluc-
tuation level. However, both intuitive arguments and de-
tailed theoretical analysis indicate that an estimate of the
form p,/po~1/k.L, (i.e., pressure, rather than potential,
“mixes”) is more appropriate. Since p;/p, = ii/n, + T,/ T,

#ed/T,, the predictions of Ref. 7 differ, both qualitatively
and quantitatively, from those presented here. The results of
the first detailed nonlinear theory of ion-temperature-gradi-
ent-driven turbulence are discussed in Ref. 8. In that investi-
gation, which dealt with a local model of the three-dimen-
sional 77; mode system, a perturbation expansion was used to
obtain mode-coupling equations. Solution of these equations
yielded the saturation amplitude, which agreed with the sim-
ple mixing-length result. Several difficulties are apparent in
this work. First, Eqs. (14)—-(16) of Ref. 8 contain no dissipa-
tion effects, and thus cannot actually yield a stationary solu-
tion for 5; > 1,.. This difficulty is also manifested in the ex-
act agreement of the mode-coupling result with the
mixing-length estimate. In contrast, while the result of this
investigation is similar to the mixing-length estimate, addi-
tional detailed functional dependencies, which are related to
the nonlinear coupling of the fluctuations to the dissipative
energy sink (ion Landau damping), also appear in the result.
A second difficulty is the questionable treatment of incoher-
ent mode coupling in Ref. 8. As a result, the consistency of
the results with energy conservation constraints is dubious.
Finally, it is worthwhile to note that the reason that none of
the difficulties discussed here are manifested by the compu-
tational investigations described in Ref. 9 is because in that
work, heating effects are omitted and the ion pressure gradi-
ent flattens. Thus, the results are representative of a quasilin-
ear, rather than a nonlinear, saturation.

In this paper, a renormalized theory of ion-temperature-
gradient-driven turbulence is presented. For %, > 7,, ion-
temperature-gradient-driven turbulence is described by hy-
drodynamic equations for density, parallel velocity, and
pressure

on; -
—37 + Ve(mvy,) + v|| (ndy) = 0,

avy; - -
m."x( a;' + vV ”ni) = —en,Vy®—V\ P, +p, Vidy,

apP; -
—a—t+UE ‘VPi -+ FPiVnU",- =0.

Three energy-like quadratic integrals

EW=_;—fd3x(|¢|2 + |V, 0P,

K:ifdsx‘ﬁ”ilz,
2
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and
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E'=%—11:fd3x{?i|2,

which are useful in describing the nonlinear fluctuation
dynamics, can be straightforwardly identified. The evolu-
tion of the fluctuation energies E ¥, E*, and E’ is governed
by the two-point correlation equations

9 gw_
ot

J . . ~

—dex[qw,,a",. — (b XVD -V, (VD)) ],

+ 1y (50 + (86 XV - V5, ) ],

J jd x(PV“v||,——(vP)d(P°>

= E(I
at

+ F(?,.i) X VD - vTD,.)).

The various terms of the two-point correlation equations can
be classified in three categories. The first, which includes the
terms OV, 3,,, I,V P,, and P,V vy;, accounts for linear en-
ergy coupling (equipartitioning) due to sound wave propa-
gation. The second category, which includes the terms

(®b XV -V, (V2®)), (B,b XV -V5,),

and (P bxved-. VP ) is related to nonlinear energy transfer
resulting from turbulent (c¢/B,) (E x b) velocity shear
stress. The third category includes the source term
(1/T){5,P,)d {(P,)/dr, proportional to the gradient of the
average pressure, and the energy sink — ., ((V,3;;)*), pro-
portional to the parallel viscosity. Thus shear stress induced
energy transfer nonlinearly couples the long wavelength en-
ergy sources with the short wavelength energy sink, result-
ing in saturated, stationary turbulence.

In order to quantitatively describe saturated ion-tem-
perature-gradient-driven turbulence, it is necessary to con-
struct and solve three coupled, renormalized (i.e., closed)
energy spectrum evolution equations. In order to render this
rather involved calculation analytically tractable, it is useful
to identify the basic nonlinear spatial and temporal scales
which characterize saturated ion-temperature-gradient-
driven turbulence. The basic spatial scale (radial mixing-
length) scale is A, = [D,/k]"* and is obtained by the
asymptotic balance of the ion sound term with the vorticity
convection term, where the fg X B nonlinearities have been
renormalized [ (¢/B,) (E xb)- V—D,/A; ] and D, refers
to turbulent radial diffusion. The basic temporal scales are
the nonlinear coherence (correlation) time

V= [Dk/Ai ] _‘;
the dissipation time

(V a )2 —1
Tax =(/'L|| fdx———‘< ;‘L >k) ’
k

and the energy equipartitioning time

- —Ud (PVn"u)k)

In addition, it is useful to define a ‘“Reynolds number”
Re=7,, /7. which parametrizes the relative importance of

Tex = Ay
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nonlinear decorrelation in comparison to dissipative pro-
cesses. At saturation, the level of turbulence must be suffi-
cient so that nonlinear transfer of fluctuation energy to dissi-
pation balances fluctuation growth. Therefore,

an ~([ (1 4+ 5,)/71k | A} /Ay, ),
and

=[+ 1),-)/1-]"2k|’|Ai,
so that in turn
Dk = [ (1 + n; )/T]z(ky s)p?cs/Ls

and

k — [(1 +,'7 )/T]IIZ

Hence, the basic time scales are given by
eqk = (L/n) [ (L +9,)/T)(k,psc,/L,),
7o = [(M+7m,)/7](k,p,c,/L,),
and
Tax = [y k37 (k5, L) =(1)"" (k,p,e,/L,),

so that 7., <7, <74 The effective “Reynolds number”
is given by

Re = (kg,L2D, /ukd)~(1+7,) for %>y

The problem of determining the saturation level of ion-
temperature-gradient-driven turbulence can be simplified by
exploiting the ordering 7., <7., <7,. In particular,
Tegk < rc,k implies that energy “equipartitioning” among
EY, EE, and E on a time scale faster than the nonlinear
energy transfer time. Thus, EY~E¥~E{, and the fluctu-
ation energy evolution equations may be added yielding

% <g12>k + (S{z) + T12 = <S(1)2>»

where (& ,,), refers to the total fluctuation energy for the
mode k. The (& ,,), equation states that the fluctuation en-
ergy in mode k is determined by the balance of energy input
due to pressure gradient relaxation

1\ ~

(S(l)2> = (F)<P.-(2) 1¢(1)>
with the nonlinear transfer
Ty = (b XV, $(1)- V,5(1)5(2))

+ (I/T)b XV,$(1) V,B,(DP,(2)) + (1>2)

of energy to viscous dissipation(u, Vﬁ ). The fluctuation
spectrum can then be obtained by solution of the (& ,,),
equation. In particular, for k»ko, Re> 1, (& 1,), ~k, =%/
The spectrum is cut off at the dissipation range wavenumber
k; =\Re ko, , where the spectrum averaged poloidal wave-
number k, p, = 0.4 is obtained from the calculated spec-
trum.

Once the fluctuation spectrum has been determined, it is

straightforward to calculate the ion thermal diffusivity and
other transport coefficients. In particular,

= [CRe)’[(1 +7,)/7]*(Kkoyp,) (pic./L,),

where C(Re)~(7/2)In(1 + 7,) and koyp;~0.4. It is inter-
esting to note that y, = F(Re)y™xirelensth g4 that the ther-
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mal diffusivity is given by the mixing-length estimate multi-
plied by a dimensionless function of the Reynolds number,
determined from the calculated fluctuation spectrum. This
functional form is characteristic of large Reynolds turbu-
lence. Note that no undetermined parameters remain in the
expression for y;. Finally, other transport coefficients can be
calculated in a similar fashion.

In this paper, the theory of ion-temperature-gradient-
driven turbulence is presented. The principal results are as
follows.

(i) The fluctuation energy correlation function and
fluctuation wavenumber spectra are calculated by solution
of energy-conserving mode-coupling equations. The calcu-
lated wavenumber spectrum of ion pressure fluctuations has
the form <T)?>k9 ~k 5?2, where

(T’,-/Poi)..ms =~3.7[(1 +77,)/7.]3/2

Similarly, the rms fluctuating radial velocity is
(B, ) ems =2.3[ (1 +9,)/7]*"*py¢. /L,

and fluctuating density is
(7/n0) = (e®/T,)~5.7[ (1 + 0,)/7]*p,/

Note that the predicted density fluctuation levels are quite
similar to the usual drift-wave turbulence level #/n,
=3p,/L,. Hence, it may be difficult to experimentally dis-
tinguish 77,-mode induced density fluctuations from more
commonplace low-frequency, drift-wave turbulence unless
propagation direction (i.e., ion versus electron) can be re-
solved. While the parameter scalings of these results are
qualitatively consistent with mixing-length estimates, they
have been derived using the calculated fluctuation spectra.
In particular, no assumptions such as k,p; ~ & (1), etc. were
used to obtain the numerical coefficients.

(ii) For 7, > 7,., the ion thermal diffusivity y; is given
by

= [C(Re)*[ (1 + 0,)/7]2(koyp,) (p2c,/L,),

where C(Re)~(7/2)In(1 + 5,). The numerical value of
the ion thermal diffusivity is consistent with the experimen-
tally measured y; for the Alcator-C tokamak (for which
koyp;~0.4). Furtherfore, for Alcator-C parameters
|C(Re)|*=5, which indicates the importance of the two-
point theory in deriving quantitative predictions for com-
parision with experiment.

(iii) For dissipative trapped electron dynamics (i.e.,
Ve <L, v >@p, ), theelectron heat conductivity due to ion-
temperature-gradient-driven turbulence is given by

4/ 1 3 2 2
X,zleé/z( 1n(1+17,))( +”'> CapPs
-

(kOy s

Here € is the inverse aspect ratio. Note that in general,
X.#X; and that y, is not determined by considerations of
profile consistency.

(iv) For collisional electron dynamics (i.e., kv
<" ), the electron response to the ion-temperature-gradi-
ent-driven turbulence results in a particle flux:
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T, ~2n,[C(Re) 1*[x. + (1 +aT)2]<1 - ’7_)

m, g Ve l+ i z
X( )2,5_1 (__’7_),,3,

e
m;) x. L, T
where

e [Xe+ A +ap)?

o 3( 1+ar)
Note that for 77, > 1.77, the flux is inward. For an Alcator-C
parameter, (¥,) =T,/n,=~1000 cm/sec. Similarly, the
electron thermal flux Q¢ can be derived. For 7, > 2.65, the
electron thermal flux is inward and corresponds to a “heat-
pinch.” However, for collisionless electron dynamics, the
particle flux is always outward. In particular, for v, <1,

]:1.77.

R CRIES AR O
’ ° Vei
77'2 2 l + 771' 3(k s)rmspaz'cs
4 1 ' 2)( ) - '
X (21 + 7072 (- 2

Hence, I', decreases with 7, thus reconciling energy and
particle confinement time behavior during pellet injection
experiments.

(v) The effects of impurity gradients on ion-tempera-
ture-gradient-driven turbulence have been investigated. For
impurity density n,, with scale length L,;, y,—y;A? and
I,—I,A% where A=[1+Z(ny/ny) (L,/L,;)] "
Thus impurity distributions peaked on axis heal 7;,~-mode
turbulence while distributions peaked at the edge enhance it.
In particular, the enhancement of I, may underlie the den-
sity profile steepening observed during the Z mode of the
ISX-B tokamak.

After the completion and presentation'® of the results of
this investigation, an alternative derivation of y; for ion-tem-
perature-gradient-driven turbulence was proposed by Con-
nor.}! In that work, based on dimensional analysis of the ion
fluid equations, a y; similar to that obtained using mixing-
length rules was derived. Several difficulties are apparent in
this work. First, no dissipation effects (such as 4 ) are in-
cluded in the basic equations, which consequently do not
even possess a stationary solution. Second, the dimensional
analysis is actually performed on approximate ion fluid
equations that omit parallel compressibility effects and thus
do not conserve energy. Finally, as a consequence of the first
difficulty, the y, actually derived has no functional depen-
dence on u; or Reynolds number. Such dependence must be
present in a theory that correctly accounts for the energy
sink and dissipation range (at large k,) of the fluctuation
spectrum. It is also worthwhile to note that the mixing-
length rule predictions are, in general, too small to explain
experimental results. This further strengthens the case for a
detailed understanding of the fluctuation spectrum and its
impact on transport.

The remainder of this paper is organized as follows. In
Sec. II, the basic model and linear theory of the ion-tempera-
ture-gradient mode is reviewed. in Sec. 111, a heuristic de-
scription of 7, mode turbulence is developed using mixing-
length theory based on one-point renormalized equations.
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The renormalized two-point equation for the fluctuation en-
ergy correlation function is then derived. The energy mode-
coupling equation is solved using a spatial representation
technique, and the wavenumber spectrum is calculated. In
Sec. IV, the detailed predictions of the theory for 5; mode
turbulence in tokamaks are presented. The ion and electron
thermal diffusivities, anomalous particle fluxes, and impuri-
ty effects are discussed. Section V includes the summary and
conclusions.

Il. BASIC MODEL AND LINEAR THEORY

An all-inclusive description of the ion-temperature-gra-
dient-driven instability (7, mode) requires the use of kinetic
theory to treat the detailed linear properties such as thresh-
old values of 7,, associated with ion-wave interaction
(Landau damping), and finite Larmor radius correc-
tions.*'> However, a comparison of the Vlasov dispersion
relation with the dispersion relation obtained from fluid
equations suggests that the fluid model adequately describes
the essential physics of 77, mode in the phase velocity regime
Vi, S /K| <V That is, while fluid equations may ob-
scure certain details of the linear stability theory and are not
applicable to the case of flat density profile (,>L,/L;),
they adequately describe the nonlinear dynamics in the
range 7, <17; <L,/L;. Hence, the use of a fluid model is
justified for parameter regimes appropriate to the confine-
ment region of most tokamak plasmas.

Here, we derive the fluid equations to describe the evo-
lution of the ion-temperature-gradient-driven turbulence.
To simplify the analysis and construct an analytically tracta-
ble model of the nonlinear evolution of the 7, mode, we con-
sider a simple radially inhomogeneous sheared slab of plas-
ma. The magnetic field is given by B =B (2 + (x/L,)p),
where L' =B 5 (x)/B, is the shear length. The parallel
wavenumber thus varies with x and is given by

ky (x)=~(x —x) (k, /L), (1)

in the neighborhood of the mode-rational surface x, , where
k'B(x, ) = 0. In this geometry, low-frequency (o <w ;) per-
turbations have the form

S(x)exp( — iwt + ik,y + ikyz).

To describe ion dynamics, the basic fluid model consists of
the coupled equations for the ion density 7, (x,¢), parallel ion
velocity &, (x,¢), and ion pressure P.(x,t)." Quasineutrality
with adiabatic electron response (7, = ##; = e®/T,, since
|@/ky|€v,) and electrostatic dynamics are assumed.
Thus, the continuity equation for the ion density is given by

an, -

—a—t'+v' (nivl,.) +V"(n,v",) =0. (2)
The perpendicular ion dynamics are due to EXB and ion
diamagnetic drifts, so that to the first order in & (/e ):

Vi = Ve + Vpi, (3
where

ve = (¢/B)b X V@
and
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Vo = (¢/eBn,)b X VP,
with
b=8/|B|

To the next order, the generalized ion polarization drift is
given by

czm 3
v, = + ViV )V ®.
Similarly, the equatlon of parallel motion is given by
Iy, - - -
m,ni ( altl 'V v",-) = —en,VHCD-—V"P, +ﬂ" Vﬁv",-.

(4)

It is important to note that the parallel flow is advected only
by vz." In Eq. (4) the parallel ion viscous diffusion term is
retained. The parallel viscosity term models either collision-
less Landau damping (1 ~Vi,:/|@|) or collisional parallel
viscosity (4 ~%:/v;;). This parallel viscosity is a sink of
energy in the large-k (i.e., dissipation) region of the wave-
number spectrum and is especially important in the nonlin-
ear theory. Finally, the evolution equation for ion pressure is

?—a}; +vg'VP, + TPV, 5, =0, (5)
where I’ is the ratio of the specific heats. The adiabatic com-
pression term I'V| §;, must be retained to account for energy
exchange between pressure fluctuations and parallel velocity
fluctuations in the nonlinear theory. However, this term has
little effect on linear stability and the basic scales associated
with the 5; modes.

To exploit the basic spatial and temporal scales charac-
teristic of ion-drift modes (i.e., sound speed ¢, and
ps = ¢, /w,), we introduce a dimensionless form of the evo-
lution equations where spatial scales are in units of p, and the
temporal scales are in units of @ '. The dimensionless fields
are defined in terms of the natural units of the average elec-
tron temperature T, the sound speed c,, and the average ion
pressure Py, so that the electrostatic potential is g=e®/T,,
the parallel ion momentum is =35, /c,, and the ion pres-
sure is p=[p,/(Py) | (T,/T.), where P, = (P, ) + p, and
n; = ny + #;. We thus obtain the basic set of fluid equations,
which describes ion-temperature-gradient-driven turbu-
lence from Egs. (2)-(5), which yield

a3 < 1+, -
—(1-V2 [1 ( ')VZ]V
8t( 1)¢+UD + . 1 y¢
—-b XVJ'VL(fo;) + V"ﬁ" =0, (6)
. 3 % e = ~ -
2 01 T XVE Vb — Vs = — V4 —V5, M

d . 147, . . -
where
¢T, d(Inng) T, d(InT))
D= T T Ty T=——, P T
eB dx T, d(In n,)
_Tr __ B2
=, p=—— 5.
T c?
3295 Phys. Fluids, Vol. 29, No. 10, October 1986

In writing Eqs. (6)—(8), we retain only the dominant
nonlinearities due to EXB convection. In order to under-
stand the nonlinear dynamics of ion-temperature-gradient-
driven turbulence, it is essential to consider the energetics of
the system. The energy flows and energy balance can be elu-
cidated by consideration of energy-like integrals quadratic in
the fluctuating field amplitudes. These energy-like integrals
are defined by the sum of the electrostatic energy (electron
internal energy) and (ion) perpendicular kinetic energy

EWz%fd%c(l&P V.3, 9)

the parallel ion kinetic energy

EKE_;-J-ﬁxw”P, (10)
and the ion thermal energy
11
E’:——-——J.d?’x'z. 11
Y I (11)

Using the evolution equations for density, ion parallel velo-
city, and ion pressure, these energy-like integrals can readily
be shown to satisfy certain relations by use of the con-
servation property of convective nonlinearities (i.e.,
§d xAV¢xb VA =0 for any 4). It follows that

a
—EV¥= —jd \ 12
E x 4V, (12)
a c o 3 o~ -
EEK: —fd3x(v,,V||¢+v||V|,p +u(v, 5, >, (13)
3 o 114
e e A e )
R x|p ||U||+,r vp (DY, ¢>

(14)
Hence, the total energy of the system evolves according to
d 1{1+mn; e 3 -
P N ETLES A B
o x| vp{ BV, 8) + |V, 5|

(15)

These evolution equations state that the coupling terms
¢V" b, and pV, §; account for transfer of fluctuation energy
between fields. Hence, the sum is conserved up to the differ-
ence of drive by ion-temperature-gradient source and dissi-
pation by ion parallel viscous diffusion. In the saturated
state, nonlinear processes dynamically regulate the balance
of input from the ion-temperature-gradient free-energy
source with the linear dissipation due to parallel viscosity x,
(sink). Naturally, a stationarity of total energy evolution is a
necessary condition for saturation.

The linear theory of the ion-temperature-gradient-driv-
en stability has been investigated by many authors,*”-81213
using both kinetic and fluid models in slab and toroidal ge-
ometry. Here, we do not attempt to address all details, nor
undertake a review of the linear theories. However, it is in-
structive to review aspects of the linear theory from the view-
point of developing a nonlinear theory. Within the frame-
work of our model equations, the linear eigenmode equation
can be derived in a straightforward manner by assuming a
space-time variation of the form
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f(x)exp[ — iwt + ika (x)dx + ikyy]
and k, p, < 1, so that we obtain the eigenmode equation
d? - 5
—= & + 2(x,Q2)4, =0, (16)
dx
where the potential function is given by

[1-90]
sQ) = ( - k2 +
Q(x @+ [+ )/
(L,/L)*x*
17
+ Q%[1—(T/7) (L"/Ls)2x2/02]) (n

with
O=w/0,, =o/(k,vp).

From this linear eigenmode equation, we can determine ba-
sic spatial and temporal scales of the 7, mode such as the
mode width, the growth rate, and the real frequency. In Eq.
(16), we neglect the effects associated with Landau damping
and finite Larmor radius corrections. This is appropriate for
the fluid ion regime which describes the low-k, region of the
wavenumber spectrum. This is an especially good model for
high-shear regions of tokamak plasmas (i.e., § = rg'/g>1),
where toroidicity corrections are probably insignificant.

The WKB eigenvalue condition for the Weber equation
gives the following dispersion relation:

147, L
92(1+k§)+9[k§( +17')+i(2n+1) " —1]
T L,
1+7,) L
vine nEm Ly (18)
T L

where n = 0,1,... are radial wavenumbers. For small wave-
numbers, k 3<[7/(1 + 7,) ] < 1, the growth rate and mode
width for the unstable ion-drift mode are given by
Qi1 +9,/7)L, /L, and A,~[(1+7,)/7]"? respec-
tively. It is important to notice that the %, mode in this wave-
number regime is almost purely growing, with growth rate
scaling inversely with the shear length. For the wavenumber
regime of k2~[7/(1 + 7,)] <1, the restoring force along
B is stronger and the 77, mode has a real frequency compara-
ble to the growth rate. The complex eigenfrequency is given
by

—1 +,’)([(1 +n,)/71L,/L; )‘/2
7 (1+k2) '

The mode width does not vary significantly from the value
for smaller &, provided the inequality |y| > |, | is satisfied.
Throughout the range of wavenumbers (ie., k2
~[7/(1+ 7,)] < 1), the potential-well structure is found to
persist, and the growth rate is larger than the real frequency.

Detailed numerical (shooting code) solutions of the lin-
ear eigenmode equation, including kinetic effects, have been
obtained by Waltz et al.’® These numerical studies indicate
that the most unstable mode is located in the low-k, region
of the wavenumber spectrum (k2 < 1) and the effective po-
tential in this regime is found to be a well structure that can
be adequately described by the potential function of Eq.
(17). Hence, the eigenfunction has the character of a radial-

Q=w, + z'yf_v_(
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ly localized normal mode (Fig. 1). These unstable modes are
the principal free-energy source for the turbulence. For
higher-k, (k22 1), w,/y progressively increases and ex-
ceeds unity. The potential-well structure disappears and
turns into a potential hill. Hence, the eigenmode takes on the
character of a propagating wave (Fig. 2). The wave energy is
then susceptible to absorption by shear damping, which re-
sults in parallel ion heating at the large-k; region of the
eigenmode. The higher-k, damped modes are a sink of fluc-
tuation energy. Hence, a possible saturation mechanism is
nonlinear energy transfer from low-k, unstable modes into
the high-k, damped modes. In order to incorporate the im-
portant stabilizing effect associated with shear damping into
the fluid theory, the sink of fluctuation energy is modeled by
a parallel ion viscosity with coefficient ., which represents
the damping of the high-k, modes. It should be noted that
the effect of the parallel viscosity on the low-k, modes is
weak, and the detailed nonlinear study shows that the satu-
rated state has a weak dependence upon the value of the
viscosity coefficient £ within the range of 7, values where
the fluid theory is applicable.

Finally, it is necessary to point out that for the two limit-
ing cases associated with 7, ~%,. and flat density, the fluid
ion approximation is not valid. These two limiting cases have
been previously discussed in studies of linear stability”-!* and
we will not repeat the results in this paper. However, it
should be noted that the range of 7, values where the fluid
theory is applicable (77,. <7, <L,/L;) seems to correspond
to most parameter regimes of experimental interest.'®

lIl. NONLINEAR THEORY

In this section, the analytical theory of the nonlinear
evolution and saturation of ion-temperature-gradient-driv-
en turbulence is presented. The fluctuation levels, spectra,

1.0 T r—TT
o8} 1
osf 1

¢ 04} .
o2}  _...) 1

-02 4 1 1 2 1 A
0

POTENTIAL
(=]

L () R
-2 1 A i 2 b
0o 2 4,6 8 0

FIG. 1. Complex eigenmode (a), and potential function (b) for k,p, =03,
7 =47T,/T,=1,and-L,/L, = 1/20.
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FIG. 2. Complex eigenmode (a), and potential function (b) for k,p, = 0.7,
7, =47T,/T,=1,and L, /L, = 1/20.

and the thermal diffusivity at saturation are calculated. The
implications of these results for predictions of heat and parti-
cle transport in tokamak plasma are then discussed in
Sec. IV.

Before proceeding with our discussions of the dynamics
of nonlinear evolution and saturation of ion-temperature-
gradient-driven turbulence, we pause to consider the ques-
tion of whether quasilinear flattening of the average ion-tem-
perature gradient or turbulent stabilization via nonlinear
coupling to dissipation is the relevant saturation mechanism.
In the case of 77,-mode turbulence in tokamaks, the average
ion-temperature gradient is driven by the balance of power
input, through Ohmic and neutral beam heating, with ther-
mal transport. Furthermore, the density profile is deter-
mined by particle transport dynamics. Thus the %, profile is
determined by external drive. Although #,-mode-induced
heat loss can be substantial, it is not catastrophic, since pre-
dicted y, values are consistent with experimental observa-
tions. As marginal stability scenarios usually are based on
the notion that violation of the marginal stability condition
results in catastrophic transport (i.e., much larger than that
actually observed ), an a priori assertion that the 7, profile is
determined by marginal stability considerations seems un-
reasonable. Thus, quasilinear mechanisms alone are not ade-
quate for the description of 7,-mode saturation, and nonlin-
ear mechanisms must be considered.

The organization of this section is as follows: we begin
with a heuristic description of #;-mode turbulence using re-
normalized one-point theory and mixing-length estimates to
outline the physics of the saturation mechanism and the en-
ergy dynamics of the system. We identify the important ba-
sic temporal and spatial scales and the Reynolds number of
the ,-mode system, and estimate the level of fluctuations
and the thermal diffusion coefficient at saturation. We pro-
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ceed to develop a more detailed nonlinear theory, utilizing a
spatial representation of the two-point spectral energy equa-
tion to quantitatively calculate the wavenumber spectrum
and the fluctuation level. Finally, a brief review of the non-
linear theory and a summary of results are presented.

A. Heuristic description

Nonlinear theories based on heuristic ambient-gradient
or mixing-length estimates (ie., |e®/T,|~1/k Ly,
D~y/k?) do not necessarily account for the dynamics of
nonlinear evolution and saturation of 7,-mode turbulence.
Furthermore, since the mode width is a function of the linear
growth rate, the meaning of the mixing-length estimate of
saturation is unclear when growth rates vanish. Thus, it is
necessary to determine spatial and temporal scales associat-
ed with saturated 7,-mode turbulence. Also, it is necessary
to derive and solve a spectrum equation that properly ac-
counts for energy flow from source to sink via nonlinear
coupling.

Now, we consider the nonlinear evolution of 7;-mode
turbulence using the equations derived previously. This set
of nonlinear equations can be analyzed by renormalizing the
nonlinearities using iterative substitution techniques, and
considering the nonlinear evolution of a linearly unstable %,
mode in a background spectrum of multiple-helicity turbu-
lence. The relevant nonlinear spatial and temporal scales can
thus be identified. Renormalized two-point equations are
then used to calculate the fluctuation levels and spectra,

Fourier transforming Egs. (6)-(8) in the y and z direc-
tions, the nonlinear evolution equations for the test mode
(k) can be written as

d -~ \ (1 +9,) ~ vy~
E(l - Ve, +1(1 +—T1’—Vf) @ yetr + ik by

4 “%(;( —ik,',)a_k'vi&k')

b .. .
ik, 3 2= v |

_ [aix(z( —ik}) (Vifi_w)&w)

g

Ve ) -
— ik, z o l¢_'k" )" ' ” =0,

(19)
K ax'

%{)"k + ik b + iky By + BK e

3 T "
[l ) 3]

: ik 2)By s o x4
[afp-son k)]
- (20)
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9. .+m) -
Epk i Ot + lk” 'Y‘u”k
a NN . % .
[[Sfgewon)n 35w
a o ‘ e
[ofgsm) - p%a)
e (21)
where k = (k,,k,), and the “driven” mode is k" =k + k'

with k' as the “background” mode and k as the “test” mode.
To obtain renormalized equations, a standard weak coupling
closure approximation'” is used to renormalize the (convec-
tive) nonlinearities by iteratively substituting the nonlinear-
ly driven fields 62, (V2 ), B, and pi> for bur s

V2., B,-, and p,., respectively. Here g2, (Vid,. )@, 52,

and p{2 are nonlinearly driven by the direct beating of the
test (k) and background (k') modes. These driven fields

satisfy the equations

Awy- (1 - V)P + il {1+ [(1 +1,)/71V2 162
+ ik {bji =S,

Ao B + ik (P + ik (P = (23)

Ao BE +i[ (14 17,)/7]0h83 + lk oie =S,, (24)

where S, S,, and S, are the sources for the driven mode
(k") and are given by

(22)

¢k

S¢ = (ik;ak (V2¢k (V2¢k
+ ik, ¢k (V2¢k)—tk' ¢“ (v2¢k ) (25)
au" O . . - OD
S, —(zk . x“ — ik, ak By + ik, by, a)”:
., Oy _
—ik; 8; e )» (26)
ap 3, - Py
S, -(zky¢k P g O 5 kg, P
ax Ix
oy _ )
k! . 27
— ik — (27)

Here, Aw,. is the decorrelation rate for test (k) and back-
ground (k') modes, and thus serves to limit the time scale of
nonlinear interaction. The solutions of the driven mode
equations can be obtained by convolving an integral trans-
formation of the source functions with the global propagator
for the field ¢, . However, a simple, approximate solution is
sufficient to understand the basic dynamics of the nonlinear
processes which we intend to discuss in this section. In parti-
cular, the turbulence is characterized by a single radial scale.
Thus, the large-x asymptotic balance which determines the
effective radial scale is dominated by the direct term contri-
butions and, for this purpose, the #{2’ terms (which contri-
bute integral operators) can be ignored. With these approxi-
mations, driven fields are given approximately by

(Vi ) P =S,/ [ Aoy ], (28)
Ojr =S,/ [ Aay- ], (29)
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PP =S,/[an-]. (30)
Note that the neglect of ¢’ is consistent with the conserva-
tion law symmetry properties of the &, p and (5} ), (5*)

equations. The symmetry properties of the vorticity equa-
tion can be preserved by noting, for localized modes,

d < i rord -
s~ [ (Vidhe) = (V16 _)d e |

J Lk
=8_xk'(_lky7€—:_2)[¢ (V34 é_)1

y
where an integration by parts has been performed. Substitut-
ing the driven-field solutions into the nonlinear coupling
terms in Egs. (19)-(21) (noting the radial parity of the
fields) yields the renormalized equations which govern the
evolution of the test mode (k):

3 < 147, .
91—, +lw*e(1 +(——7’—Vi)¢k + 2
ot T Jx
J -~ - oy -
X(Dk a‘(vi¢k)) —_ Ckk§¢k = - lk"U"k, (31)
ad . ad aJ . - -
5 e~ ax (Dk Ew Unk) + Gk S0y + pk B
ad . ) 7]
5P 5 DB ) + ek
(47 - . -
- T”l Dy — ey Yoy, (33)
where
(k)% |?

D= ——-o1,
- g Aoy 4y

=3 |08, /9x'|*
y Kk’ A("k+k' .

Here, the diffusion coefficients D, and C, account for the
principal nonlinear process, which is random convection of
fluid elements by electrostatic turbulence. Note that only
diffusive effects have been retained in the renormalized vor-
ticity equation. This is because the diffusion terms dominate
the large-x asymptotic balance, which in turn deterrmnes the
basic scales of the turbulence. Obviously, more terms'® must
be retained in a complete, energy-conserving renormaliza-
tion.

Having derived the renormalized equation for 7,-mode
turbulence, we now discuss the saturation mechanism asso-
ciated with turbulent damping of unstable sound-wave prop-
agation and the general properties of the saturated state of
7,-mode turbulence in a simple heuristic manner. Since
7n,-mode turbulence is a driven system with (linear) viscous
dissipation damping the smallest scales, it is necessary to
delineate the different spatial scales associated with “iner-
tial” or “dissipation” ranges. Thus, it is necessary to parame-
trize the relative importance of EXB turbulent convection
and linear viscous diffusion. Hence, it is useful to define, in
the usual fashion, a Reynolds number as the ratio of the
nonlinear term to the linear dissipation term in the dynami-
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cal equation for & . Thus, the Reynolds number for the 7;-
mode system is defined by
_ [Du/AR] | Tax

[k, (AL/LD]  Tox
where 7,, refers to the linear dissipation time associated
with ion parallel viscosity and 7, refers to the coherence
time (eddy-turnover time) associated with nonlinear scram-
bling by EXB convection. Here, A, is the poloidal wave-
number dependent radial correlation length and k,, is the
rms poloidal wavevector. Upon estimation of A, , to be dis-
cussed below, it follows that for long wavelengths
Re~ (1 + 7,). Hence, this system has a finite width inertial
range spectrum for the parameter regime of experimental
interest. Here, inertial range means 7, £7,, but allows for
fluctuation growth due to %, relaxation. Thus, our definition
is different from that used in Navier-Stokes turbulence. Fin-
ally, note that the fluid model is especially well-suited for
large Reynolds number regimes. For high Reynolds
numbers, the basic picture of saturation is constructed and
the basic nonlinear spatial and temporal scales can be ob-
tained by using a mixing-length theory based on the assump-
tion of maximal turbulent energy transfer, which ignores the
details of the energy sink. This information is then used in a
more complete and quantitative calculation of the fluctu-
ation spectra. in particular such calculations properly ac-
count for the role of the dissipative energy sink in determin-
ing the saturation level of the turbulence.

To describe the saturated state, it is natural to specify
the saturation condition as d/9(E¥ + EX+ E*) =0,
namely that total fluctuation energy must be stationary in
time. When this criterion is satisfied (ignoring localized qua-
silinear profile flattening) the energy evolution equations,
Eqgs. (12)-(15), state that drive by d (P,,)/dx relaxation
balances energy exchange (equipartitioning) by the linear
coupling term ¢V, 7, and that viscous parallel dissipation
balances the sound-wave coupling destabilization term in
Eq. (13). Then saturation can be achieved by energy flow
from ion-temperature-gradient energy source to ion parallel
dissipation, i.e.,

(34)

3 =2 1 3. ) e 3 d<P0i))

,ufd x|V, 5 | de x(pqui)( )

This transfer is dynamically regulated by the nonlinear cou-
pling and by the linear equipartitioning terms. That is, the
unstable fluctuations are excited primarily at low-k, (large
scales) by tapping the ion-temperature-gradient free-energy
source. Interactions among these large-scale unstable modes
remove wave energy by transferring energy to smaller scales
and ultimately to stable fluctuations. This nonlinear scram-
bling process is accounted for in the renormalized equations
by turbulent diffusion. Therefore, for large Re, mixing-
length theory based on maximal turbulent transfer can be
used to qualitatively (but not quantitatively) describe the
saturated state.

It is important to notice that the familiar Hasegawa-
Mima!® vorticity equation nonlinearity due to nonlinear po-
larization drift does not play as important a role in this case
as in the quasi-two-dimensional case of drift-wave turbu-
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lence. This is because the 17; mode is fundamentally a three-
dimensional sound wave with dynamics determined by the
pressure and velocity field evolution. Indeed, in local theory
the polarization drift can be ignored. Nonlocally, it serves
primarily to set the radial eigenmode scale.

Setting the temporal derivative equal to zero and using
the nonlinear radial scale A, from the renormalized ion pres-
sure equation [Eq. (33)], we can relate the pressure re-
sponse p, to the electrostatic potential fluctuation é, by as-
ymptotically balancing turbulent E X B mixing of a localized
pressure fluctuation over a nonlinear mode width with the
ion-temperature-gradient driving term, thus obtaining

Pei[ (14 1)/7) (04 /B, ), (35)

where Aw, = D, /A? is the decorrelation rate associated
with EXB turbulent convection. Substituting this relation
into the ion parallel momentum balance equation [Eq.
(32)], and balancing turbulent diffusion of ion parallel mo-
mentum (which couples to the destabilizing p fluctuation)
with the potential fluctuation, and then solving for D, yields
the diffusion rate required for mixing-length saturation.
This diffusivity is given by

D ~[(1+9,)/7]"k [ A},
where k | =k, /L, in a sheared slab.

The dissipation mechanism for #,-mode turbulence can
be clearly seen by rewriting the ion parallel momentum ba-

lance equation using a heuristic balance argument as above.
This yields

(Ao, +pki + (K] /8o ) [ (14 9,)/7] )b =S},
(37)

(36)

where the source of ion parallel momentum is given by
S ~Y(k}/Aw, ), . This equation states that the ion par-
allel momentum fluctuation is driven by the transfer of pres-
sure fluctuation energy, which taps the ion-temperature-gra-
dient source through the compressional coupling term, and
is dampled by turbulent E X B convection to parallel viscous
dissipation. That is, for the most unstable low-ky modes, the
parallel viscosity due to ion Landau damping is too weak to
stabilize the fluctuation, but draining of energy by a cascade
process effectively couples to larger parallel viscosity at larg-
er k,. This in turn cuts off the unstable propagating sound
waves and saturates the turbulence. It should be noted that
although a mixing-length theory was used to estimate the
level of diffusion in the saturated state in this heuristic sec-
tion, the picture of saturation is different from that of pre-
viously proposed theories which either invoked naive mix-
ing-length rules or relied on an analogy to the Hasegawa-—
Mima-type nonlinear vorticity equation system to achieve
saturation. Theories which are naive mixing-length rules to
estimate the saturation amplitude of the fluctuations de-
scribe the process of saturation by turbulent mixing of a pres-
sure fluctuation over a linear eigenmode within one linear
growth time. The other theory® relies on an analogy to the
Hasegawa-Mima equation in order to redistribute fluctu-
ation energy throughout k, space by mode-coupling pro-
cesses, thus coupling to perpendicular viscosity in higher-k,
modes which are the ultimate sink of energy. A linear ion
parallel momentum balance equation is assumed and hence
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the important effect of turbulent transport of ion parallel
momentum is neglected. These theories fail to discuss the
important saturation mechanism associated with the cutoff
of unstable sound-wave propagation by turbulent convec-
tion of ion parallel momentum to dissipation. They thus lead
to spurious physical pictures of saturation which are not
consistent with energy conservation or which do not include
sound-wave dynamics or properly treat the effects of dissipa-
tion.

To complete our discussion of the saturated state, the
nonlinear radial scale must be determined in order to esti-
mate the diffusion coefficient. The nonlinear radial scale can
be estimated from the continuity equation by balancing vor-
ticity diffusion with destabilizing sound-wave coupling.
Thus, the turbulent mixing-length scale is given by

Ay=(Dy/k )™, (38)

Using the estimated diffusion level D, in Eq. (36), which is
necessary to maintain dynamical balance of turbulent trans-
fer of energy with ion-temperature-gradient drive, it follows
that saturation occurs for mixing lengths

Ay=[(1 47,/ (39)
with diffusion of the order of
D, ~[(1+ ﬂi)/T]z(ky/Ls). (40)

A more quantitative calculation of diffusion level at satura-
tion will be presented in the following discusison of the for-
mal nonlinear theory. With these two conditions Egs. (39)
and (40), the nonlinear evolution of 7, modes can be de-
scribed in the following way. Before reaching saturation, the
spectrum gains energy from the ion-temperature-gradient
free-energy source. The diffusion D, , and therefore the non-
linear radial scale A, , increase. This process continues until
energy drain by nonlinear coupling (of correlated diffusion)
is sufficient to balance the driving force. A qualitative but
not quantitative estimate of the fluctuation level at which
this balance occurs is given by the mixing-length limit. At
this point the perturbation is saturated and a stationary state
is achieved.

Having elucidated the basic saturation mechanism and
calculated the diffusion level at saturation, it is now possible
to estimate a number of relevant quantities and scales that
characterize saturated 7;,-mode turbulence. These include
the mean-square radial velocity, the rms value of potential
fluctuations, and the level of pressure fluctuation, as well as
the nonlinear coherence time, equipartitioning time and dis-
sipation time scales. Using the definition of D, and making a
Markovian approximation (i.e., Aw,, will replace Aw, ., in
the driven propagator), the level of diffusion at saturation,
Eq. (40), can be rewritten as

p-% (k)| |2
K A&)k:
Ek' (1 +77i)2(ky)rms
= o~ ’ 41
gAwk, T L, “b

where B, = (k)? |$k' |2 is the radial velocity squared. Then
the rms radial velocity can be estimated as

() ems =[ (1 +7)/71P*[ (K} )ems /Ls ] (42)
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and the rms value of the electrostatic potential fluctuation
level is

() oms = () ema [ (1 +7,)/7]>2(1/L,).

In a similar fashion, the rms value of pressure fluctuation
level can be estimated by using the stationary relation of p
and ¢ at saturation. It follows that

(B)rms [ (1 4+ 9,)/7]**(1/L,).

Because of the (X, )., dependence in various estimated
quantities, it is necessary to calculate (X, )., at saturation.
This is possible only with the knowledge of the spectrum of
fluctuations. Hence, we will calculate this value after the
spectrum calculation, presented in the next section.

In addition to the quantities estimated above, the basic
temporal scales associated with the nonlinear processes are
also important, in order to address questions of energy flow.
First of all, the basic nonlinear scrambling time can be de-
fined by the eddy-turnover time associated with E X B turbu-
lent convection, and is given by

Tox'=[Dy/A} = [ (1 + 7,)/7] (k,/L,).
Second, the dissipation time can be defined by using ion Lan-
dau damping as an effective parallel dissipation mechanism

(here, u~v} ;/|w| models the parallel viscosity caused by
ion Landau damping), and is given by

IO R ( k, )
Td,k == X fad .
E 7L,

Note here A, is used for x in k. Recall that using these two
time scales, the Reynolds number for 7,-mode turbulence
(defined previously) can be estimated to be

Re=7,, /T ~(1+17,)

when 7; must be large enough to use the fluid model. It is
also important to define the equipartitioning time between
EY, EE, and E{ through the linear energy exchange pro-
cess,

Teak=(5dx( V0 W )/E

By using the stationarity relation, the equipartitioning time
can be estimated as

Tk =Y[(1 +7,)/7](k,/L,).

For the large but finite value of 7,, it is important to notice
that the hierarchy of these time scales is given by

Teq ST, <Tg-
The importance of this hierarchy will be addressed in the
following section.

B. Formal nonlinear theory

In the preceding section, the dynamics of the saturated
state have been discussed, and fluctuation saturation levels
and the basic scales associated with ion-temperature-gradi-
ent-driven turbulence have been estimated using one-point
renormalized equations. Although this information is im-
portant for abasic physical understanding of 77,-mode turbu-
lence and the resulting confinement scaling of tokamak ex-
periments, a quantitative description of the wavenumber
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spectrum of the fluctuations requires construction and solu-
tion of energy spectra evolution equations. For example, the
average wavenumber (X, )., cannot be determined from
one-point theory and can be obtained only by use of energy

spectrum equations. \

Before considering the dynamics of energy evolution, it
is necessary to discuss energy conservation and energy flow
in wavenumber space. The wavenumber space evolution
equations for the energy-like integrals (with triplets renor-
malized) are given by

%EW= —gfdxa—kkuﬁuk +;Id ( (kA):;ljk |2<a‘f9xk i(ﬁ&ﬂ)

3 ((aa_k,/ax')-A(jk{ax') (Vide)) kﬂ&klz), (43)
%EK-‘- “";dewu—kku‘;’k + Dy —wkybu) — Ek:fdx"ﬁ(ﬁu—kﬁuk)

NN CENGN Vi

rxfe s (BEL|Z) B2 ), (44
%El: “Efdxl’ kb + Zfdx(l? k) (d<P°'))

LR g )

e, AR )

r

In Sec. II, we discussed energy flow and conservation of en-
ergy in configuration space, and identified compressional
and sound-wave coupling terms that transfer energy
between fields. In mixing-length theory, saturation of low-,
modes (for Re > 1) can be estimated by invoking turbulent
mixing, represented as a diffusion process, as a vehicle for
draining energy from the low-k, modes. Since the one-point
theory does not conserve energy, saturation levels can at best
be qualitatively estimated using mixing-length theory. How-
ever, spectral energy equations conserve energy. Thus, they
are the natural tool for a spectrum calculation consistent
with the basic conservation properties of the system.
Except for the vorticity nonlinearity, the renormalized
convective nonlinearities have the common structure that
the coherent part of the turbulent response drains energy,
and the incoherent part refurnishes energy by emission. This
competition results in an energy cascade. We can also identi-
fy an energy transfer mechanism from source to sink by not-
ing the role of the compressional coupling term. The cou-
pling term, {dx pV, 3, , transfers pressure fluctuation energy
to parallel momentum fluctuation energy through equiparti-
tioning. Hence, ion-temperature-gradient-driven internal
energy in (§*) can be transferred to parallel kinetic energy in
(0} ) and ultimately dissipated through parallel viscosity at
the high-k sink. It should also be noted that the hierarchy of
time scales associated with these important processes (i.e.,
Teq < T. €74) shows that equipartitioning can take placeona
nonlinear time scale that is shorter than a correlation time
and much shorter than a dissipation time. Even though equi-
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partitioning takes place among all three fields @, 3, and p,
the most important dynamics of energy flow are controlled
by the evolution of { 5%) and (&} ), which couple directly to
the energy source and sink.

With these observations, a theory of energy evolution
can be constructed by assuming equipartitioning of energy
and by absorbing E ¥ into a total kinetic energy. The dynam-
ics of nonlinear energy evolution can be described by two-
point, one-time energy spectrum equations for ( 5°) and
(%), which retain incoherent emission as well as coherent
diffusion. Here, the (i*) term represents the total kinetic
energy from E ¥ and E ¥. Two-point equations for the ener-
gy spectrum can be obtained straightforwardly from the one-
point equations, Egs. (6)-(8), by multiplying by the field at
a second point and taking an ensemble average. After sym-
metrizing, the resulting equations are

- (U(I)U(Z)) —',U(Vul "z)(v(l)l’(z)) + T,

= = <U(2)V||1P(1)> - (17(1)7"217(2)), (46)
1 §<p(1)p(2)> + T,
= — <P(2)v||1v(1)) - (ﬁ(l)vuzﬁ(z))
Py
—[<p<z>v,1¢(1>>+<p(1)vy2¢(2)>]( Gud),
47)
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where T'%, and T'%, are triplets due to convective nonlineari-
ties. The triplets are given by

h = (b XV,$(1) - V,5(1)B(2)) + (1o2), (48)
T2, = (1/Y) (b XV,$(1) - V, (1)B(2)) + (12). (49)

Here, the slow time-scale variations are described by the
time derivative, and (1<»2) stands for term with indices 1
and 2 exchanged. The evolution equation for the total energy
can be obtained by adding two equations and assuming equi-
partition of energy between fields. This resulting equation

can be formally written as
a
E(g12>+<5{2>+T12=(S?2)9 (50)

where
(€ )=(0(1)i(2)) + (1/0)H(1)p(2))

represents the total energy correlation function,

d (Py)

ov_1,.
(Slz>=—T"(P(2) 1¢(1))( )+(1+—>2)

is the fluctuation source, proportional to the ion-tempera-
ture gradient,

(S1,)~— ﬂ(vul ||2)<U(1)U(2)>
is the sink, representing dissipation by parallel viscosity, and
T,=T}, +T%

is the nonlinearity (mode coupling). Here, it is important to
notice that the nonlinearities (triplets) vanish as the relative
separation goes to zero, while the source and sink do not.
Turbulent mixing, which is represented by the transfér term,
destroys all but the smallest spatial scales (smaller than the
spatial correlation scale) on the time scale of a correlation
time. Also note that the gradient source drives energy at all
scales, and that the dissipative effects of parallel viscosity are
also included in this system. Unlike the turbulent mixing
process, these produce diffusion that stays finite as the rela-
tive separation goes to zero. This scale-independent decay
mechanism destroys small-scale correlation in the “dissipa-

tion” region of spectrum where dissipation effects dominates
|

nonlinear processes. Hence, this two-point energy evolution
equation incorporates the basic effects of dissipation, source,
and turbulent transfer.

While the neglect of incoherent mode coupling (an ap-
proximation made in the one-point theory) does not signifi-
cantly alter the predicted fluctuation levels and scalings, the
spectrum is sensitive to the effects of incoherent mode cou-
pling. Hence, for the large Reynolds regime case considered
here, the steady-state two-point correlation is determined
not by the balance of ion-temperature-gradient drive with
parallel viscous dissipation, but by inhomogeneities in the
transfer terms associated with mode coupling. In order to
analytically solve the spectral energy equation, here we use a
spatial representation, which is an application of the meth-
ods of renormalized two-point theory (clump theory) to this
fluid plasma system. The basic techniques utilized were ori-
ginally proposed in the context of phase space density turbu-
lence.? In this case, transfer in wavenumber space is repre-
sented by spatially inhomogeneous relative diffusion. By
inverting the spatially represented energy evolution opera-
tor, the structure of the wavenumber spectrum can be ob-
tained. This inversion accounts for the spatially inhomogen-
eous turbulent scattering process, as well as the coupling to
the dissipation and turbulent diffusion which determines the
decay of the correlation. This procedure enables us to obtain
an analytic solution of the mode-coupling equation. Fur-
thermore, the inversion of the operator determines the spec-
trum balance (steady-state) condition which in turn deter-
mines the saturation level.

Now, we can find the evolution operator in the spatial
representation.'® We transform the evolution equation for
the two-point (energy) correlation, Eq. (50), to a relative
coordinate system (x.,,x_), where x, = }(x, + Xx,) is the
average position of the points 1 and 2, and x_ = }(x,; — x;)
is the relative position between them. Here, it is necessary to
renormalize the nonlinearities (triplets), which describe
turbulent scattering of energy due to temporally and spatial-
ly varying potential fluctuations. The weak coupling closure
with standard iteration scheme used in the previous section
is used to renormalize the triplets. Introducing Fourier ex-
pansions in the y and z directions, the triplets can be
written as

T),= EZZ(exp(iky 1+ ik,z)exp(ik ; yy + ik ;z,)exp(ik | y, + ik [z,)

¢k

(2) + ik,

(-wa
e

The average (---) can be computed by integrating over the
average position variables y, and z_, . After eliminating the
trivial summation, the triplet can then be expressed in terms
of test (k), background (k'), and driven beat (k" =k + k')
modes. The driven fluctuations are iteratively determined,
using the solution for the driven fields given in Eqgs. (28)-
(30). As discussed in Sec. II, we neglect the driven potential

¢k(1

(2) + ik} a¢"
1
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(l)vk (DY (2))

(2))]> + (1e2). (51)

r - :
fluctuation @, , ,. and make a Markovian approximation

(Ao ~Aw,. ) in the driven propagator, thus obtaining the
renormalized triplet

T ARG VR VR
= —|DL ——+ D’ ) (52
12 ( Xy pv) ) 12 )
where the relative diffusion coefficients are given by
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x x x(1,2) x(2,1)
D* =2D*—D —D

(53)
and
D’ = 2D — pyaL) __Dy(2.l)’ (54)

with D* = D, and D” = C, in the expression of Egs. (31)-
(33) and

(D x(1,2) + Dx(Z,l)
(k)X _1 (D (2))

Ao,

= 22 cos(k’+x_)
o

(Dy(l.l) + Dren

— 22 cos(k’ *x_) (00 _\ /0x,(1)- 3\ /3x,(2)) ’

g Ao,

Here, the renormalized triplet approximates the ExB
turbulent mixing and mode coupling as a relative diffusion
across the magnetic field. The resulting relative diffusions,
D and D’_, are inhomogeneous and are seen to consist of
two parts, scale-independent diffusion, D * and D”, same as
one-point case, and scale-dependent correlated diffusion,
D @Y and D 9, which accounts for incoherent mode cou-
pling. These inhomogeneities of relative diffusion show that
triplet behavior as 1—2 is correctly accounted for in the
renormalization procedure. The inhomogeneity of relative
diffusion with respect to relative separation is illustrated in
Fig. 3.

The characteristic spatial scale is referred to as correla-
tion scale for which D (? and D ®" differ from zero. The
correlation peaks when the relative separation is less than
correlation scale. For relative separation less than the corre-
sponding correlation scale, i.e., |k, » x_| < 1, where k, is the
spectrum-averaged wavenumber (i.e., typical wavenumber
of fluctuations), the relative diffusion coefficients, D* and
D’ _, can be approximated by expanding the relative vari-
ables

D=V 2D 5V (k. +khyE + kA2 ),

where k,,, kg, and k,, are the spectrum-averaged wave-
numbers in the x, y, and z directions, respectively.

Having renormalized the triplet nonlinearity, we also
need to express the parallel viscous diffusion term as a dissi-
pation operator for energy correlation in the relative coordi-
nate. Using the equipartitioning assumption, we first write
the dissipation term as a Fourier expansion in the y and z
directions at each radial position, i.e.,

20" =" ---------z=--

D-(l.z) + DI(Z.I)

KoxX-

FIG. 3. IHustration for the inhomogeneity of relative diffusion coefficient to
the normalized relative coordinate.
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(S1,) =p(V4 +Vﬁ2)<6(1>5(2)>z§(vﬁ1 + VLB )

= %(22 exp(ik,,y, + ik, p,)exp(ik, z, + ik, z,)

k, k;

_ k 2 _ k 2
(gl g el )

X(Sf,z)k,,h). (55)

To obtain this expression, recall that the wavenumbers cor-
responding to each position, k,,, and k,, (@ = 1,2),and V|,
vanish at the rational surface associated with that position
x,(k,),ie.,

B, B, (x, (k,))

3 k., 7 k. =0. (56)
As before, the average (--) produces Kronecker deltas
6kyl + kﬂ,O, 5,‘2' +5,0 which relate the two wave vectors
(k, = —k;). As a result, the double Fourier expansion is
reduced to one in the relative variable. Furthermore, using
the reflection invariance (k— — k) of Eq. (56), it can be
seen that both positions are tied to a single rational surface
defined by (B,/B)k, + [ B, (x,)/B |k, = 0. Again, writing
x, and x, in terms of the relative coordinates, the dissipation
operator (in the spatial representation) is given by

(u/2) (Vij, +V)(% 1)
_ 2, .2
=."f_ze"‘yy_+ik,z_< (xy —2%)" +x )k§<g12)k

4 < L?
- 2 2 2
z& (x+ sz) +x_ \ a (g12>. (57)
4 L? Joy*

Thus, the renormalized two-point equation is given by
_ 2x 2 2 2 2
[a &(("+ ) x )43 —(D" g

o 4 L? L? Jay> Y
2
+pr. 2 )]<Z’,2>=<s?z>, (58)
-

where (S9, }, the source term which accounts for fluctuation
energy growth through average ion-pressure-gradient relax-
ation, is given by Eq. (50). Note that here, (x, — 2x,)
~4A,, the turbulent correlation length.

In order to determine the steady-state spectrum, it is
necessary to find the steady-state solution of Eq. (58). This
requires inversion of the evolution operator

0 #((x2+ — )" | A ) o2
Ta 4 L? L% oy
Ek 92
—(p~ £Z—+p» & 59
( T ooxh - 3y2) >

which describes the decay of correlation by relative diffusion
due to EX B shear stress, and by parallel ion viscous dissipa-
tion. Formally, we can invert the evolution operator .#, and
obtain the steady-state solution of Eq. (58) as

(gn) =7'c|(x_’y—)<S(1)2), (60)
where the inverse operator 7, (x_, y_) = .~ . The opera-
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tor 7, (x_, y_) describes characteristic time associated with
the evolution of two-point correlation, and depends on the
relative separation of the two points.

A solution for 7, may be obtained using the Green’s
function g, satisfying the homogeneous equation

Lgx_[x_) =0, (61)
so that

(€ 1) = fdx:g<x_|x'_ 1S, (x ).

Although obtaining an exact expression for the Green’s
function g is possible, it is usually very complicated. Hence,
it is sufficient for our purposes to determine the characteris-
tic time 7, associated with the evolution operator .#’. This
approximate correlation time 7, can be determined by cal-
culating the moments of the Green’s function, which are
defined by

(4 >Efd3x_

A set of relative coordinate moment evolution equations can
be obtained by taking the second moments of the Green’s
function and using the relation

o= [l o
a4\ r2 L? )a2

a2 d?
+(p~ Z—+D”
( pe) P )]g

A(x)g(x_|x"_).

and integrating by parts. The resulting moment equations
are

—(k X (X))

=4D k5, (k5 (X2 ) + k5,00 ) + k5. (2L)),
(62)

9 (k3,07 M

T )

+4Ckkgy(k0x<x >+k <y2 >+k (22—>)y
(63)

—(k (2 ) =0. (64)

By defining a relative separation normalized with correla-
tion scale

RL (=k3x> (1) +k§y> (1) + k5,2 (1), (65)
and its moments
(R (0)=k3, (X" ) + k5,00 ) + ko (22 ),
the resulting evolution equation of relative separation is
2k ox

X (Dyk g )(RZ ) =0. (66)

2
gt—zm 2y _ 4Dk, + Cuk?, (R2 y —
It is desirable to define a Reynolds number and other rel-
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evant parameters using the correlation scale k;. Therefore,
let the Reynolds number be defined as
_ [Dk o 1 _ Tax
[pkd,/(L2K3D]  Tex
where D, is the scale-independent radial diffusion coeffi-
cient, and 7, is the coherent (one-point) relaxation time, and
isgivenby 73! = D, k }, in the high Reynolds number limit.
Here T, is the parallel dissipation time and is given by
ok = [uk3,/(L2k3.)]. By parametrizing the ratio
between scale independent diffusion in the x and y directions
as 6=(C, k} /Dkk(z,x) the evolution equation, Eq. (66),
can be rewritten as
2
O (2 )2t Fpay 2 (g2 )0
at? T, Ot TaTe
(67)

Equation (67) describes the divergence of neighboring fluid
elements by the turbulent scattering at high Reynolds
numbers. At the small scales, however, scattering is damped
by parallel dissipation.

The solution of the evolution equation is obtained as an
initial value problem in which the initial separation is given
by the second moments, i.e.,

{2 Hico =22 ) (68)
and hence, (R”_ ) |,_o = R determines the first and sec-

ond derivatives of (R %) at the initial time:

_40+9) po

L Koo

t=0 Te 2Td
X[(x+—2xs)2—x2_ 1, (69)
and

(92
L _(R?
aﬂ( L (1) .

2
=(16(1J2r5) L2 )Rz_
T TeTg

<

$ 24 pa e 224 ). (70)
Tch
Then, the solution of Eq. (67) is given by
(RZ (1)) =Ae“* "+ Be* (71)

where u , are the two roots of the characteristic equation
generated by trial solution e**

uw— [4(1 +8)/r.Ju—2/7,7,=0. (72)
The two roots are given by
=1
=2(1+5)(li | 4_Re )
7, 2(1 4+ 6)?

The coefficients, 4 and B, are determined by requiring that
Eq. (67) satisfies the initial conditions Eqgs. (68)-(70).
Thus

A =(u+—u_)—l[(i)az< )

o’
- ( )a:m -
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t=0

], (73)
(4]

=



B =(u,— “—)_l[(z_i)gim - >l,=o

-Gl L)

For initial separations which are much smaller than the spa-
tial correlation scale, |k, +x_|<1, the time ¢ will become
large before relative separation reaches the correlation scale,
i.e., |Ko*X_|=~~1. Then we may approximate the solution
with the time-asymptotically dominant piece, which is (not-
ing that ¥ _ <0)

(R (1)) Ade" . (75)

Here, the coefficient 4 can be calculated straightforwardly
using Eq. (73), which yields

A = [(1 +€/2) +\/1 +€] {ak%x(x_,_ _sz)Z
VI+e(l+y1+€)
+ U +a)kdxt +kby. +ki2 ) (76)
where Reynolds-number-dependent numerical parameters
are defined by e = Re™!/[2(1 + §)?]—0 as Re—c0, and

a=€e(14+8) (1+y1+e€)/4[1+€/2)+1+€]-0 as
Re— oo. When time ¢ is of the order of the correlation time
7., the relative separation reaches the correlation scale, i.e.,
(R> (#))|,~,,~1. Using this condition, the two-point
correlation lifetime can be determined by solving for ¢ in Eq.
(75), thus yielding

(74)

T

Ty = <
L 201+ [1 +TF €]
+ (A +a)kd x> +k3y. +k32 1} (D
where C= [(1 +€/2) + VT + el/ANT+ €(1 + V1 + €)1

as Re—cw. The factor multiplying the logarithm in the
expression of 7, represents the large separation coherence
time, retaining finite Reynolds number effects.

For Reynolds number exceeding order unity, the loga-
rithmic function yields peaked correlation functions for
small initial separations. The peaking becomes increasingly
pronounced as the Reynolds number increases. The correla-
tion scales are determined by the coefficients of the relative
coordinate in the logarithm. The radial scale of correlation
can be deduced, and is given by

sz(l +a)—-1/2c-1/2ko; 1,

In{C [ak}, (x, — 2x,)?

where k' is the (nonlinear) radial mode width (mixing
length). This radial scale incorporates finite Reynolds num-
ber corrections to the mixing-length estimate through the
parameters a and C, which are functions of Reynolds num-
ber. The result of the mixing-length theory can be recovered
for Re— o limit, i.e., A, ~k ;' = A, as Re— 0. The corre-
lation scale in the y direction is k o, ', which corresponds to
an inverse of the typical wavelength in the fluctuation spec-
trum. It is also important to notice that the one-point re-
sponse correctly reduced to the coherent turbulent response
in the limit of large Reynolds number. This limit is assumed
in the mixing-length theory. The “inertial” range corre-
sponds to scales for which Re» 1, and represents a regime
where the nonlinear effect dominates the dissipation in the
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two-point equation, and for which the dynamics is conserva-
tive. Also in this limit, the parameter & approaches zero and
the correlation is singular at zero initial separation. For fin-
ite Reynolds number regimes, the correlation function is fin-
ite even with zero initial separation, because parallel dissipa-
tion contributes through the ak 2, (x, — 2x,)? term. The
“dissipation” range k, spectrum can be estimated using the
definition of Reynolds number and setting Re~1 for the
dissipation range wavenumber, that is, in the dissipation
range the linear parallel dissipation is comparable to nonlin-
ear effects. This yields (k, ),~vRek,,, where (k, ), is the
dissipation range wavenumber.

It is worthwhile to note here that the correlation bound-
ary can be defined by

C{akl, (x, —2x,)?
+ (1 +a)kix® +k3y +kdz22 }=1 (78)

In the normalized relative coordinates, this forms an ellip-
soidal surface for finite Reynolds number. For the case of
infinite Reynolds number, this correlation boundary is a
spherical surface with radius unity in normalized relative
coordinates.

Using 7, given in Eq. (77), we can obtain the stationary
spectrum equation from the steady-state solution of the two-
point energy correlation equation,

(€ ) =7y (S?z)-

In order to calculate the steady-state wavenumber spectrum

from the stationary spectrum equation, it is necessary to ex-

press the source (S'9, ) interms of (& |,) by using the steady-

state condition in Eq. (35) and the equipartitioning assump-
tion. This yields

l + 17:' |k y |

<S?’)z;(—) L

T

(& 1,(x_) )keik’y‘eik‘z'.

(79)
Since two points are well correlated only if the relative sepa-
ration is small compared to correlation scales, i.e.,
|ko * x_| <1, the approximation exp(ik,y_ + ik,z_)=1is
employed and the x_ dependence in (& ,(x_)), is also
neglected in the source term for the high Reynolds number
regime. Thus, we can rewrite the stationary spectrum equa-
tion as

(8 a(x_y_z_))=1y(x_y_,z_){S, (80)

where (S °) is the source term evaluated with these approxi-
mations.

Since {5 °) is now independent of the relative coordinate
x_, the wavenumber spectrum of the energy correlation can
be determined by the Fourier transform of 7, (x_,y_,z_).
After Fourier transforming both sides of Eq. (80) in the y
and z directions, and taking an x _ average over radial corre-
lation length A, we obtain

(& 12

1 1 Ax
= —_ d d -
2Ax (Zﬂ')J-_Ax x_f y_f dZ_ Ta (x_,y_,z__)

X (S o)e — lk,v_e — ik,z_,

(81)
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where
TalX_y_z_) =1, (xypox_y_,z_) | (x, —2x) =A,*

Since the expression for 7, loses its meaning and validity
when the argument of the logarithm is larger than unity, it is
necessary to restrict the range of integration to within the
correlation boundary, as given by Eq. (78). The integration
can be performed using a Fourier-Bessel expansion and the

summation theorem of Bessel functions. This yields
i

Fllk,) = =

- 1 [ f f
= dx_|dy_|dz_
(Ta D 2A, J—Ax 7

% —7:(;] (x_,y_,z_ )e — ikyy_e —ikz

i F(k, k,),

= (82)
2(14+8) (1 +y1 +e)

where

Ax s .
L f dx_jdy_sz_e_'k’y‘e"'k‘z‘ ln[( il)+C[(1+a)k§xx2_ + ki) 4k ]]
0 a

( 47
Cko, ko,

with £ =1/(1+a) and B=/(k,/ke, )" + (k. /ko,)".
Details  of these integrations are given in Appendix A.
Hence, theinertial range energy &, spectrum can be calculat-
ed by taking the Re— o0 limit and summing over k_, yielding

® 27k, k
R |
¢ 0 k, ko,
(34)

The wavenumber dependence of the energy spectrum fits a
power law of the form

(€12, ~k, "

in the first decade of decay from its peak value.

Numerical evaluations of the K, -wavenumber spectrum
of energy correlation for the two cases (Re = Sand Re— w0 )
are plotted in Fig. 4. In the low-k, region of the spectrum,
(€ 12)e, =k 9 and exhibits an energy-containing range struc-
ture. In the k, ~k,, range, the spectrum falls off according
to the power law and exhibits an inertial range structure.
Finally, for k,~6k,,, (E 1z>k, is oscillatory due to the ap-
proximation used to cut off 7 at the correlation boundary.
This oscillation indicates a breakdown of the approxima-

IO' T T T lIIIll T 1 LI
= 5
D
> =
x 1ok
g F
o
=
[03]
| \
= \
A, 10'E — High Reynoids Number Case o\ s
vy F — == Reynolds Number 5 Case \ E
N r P
- ‘ -
L | 4
1
Io-zi N A 1 L I WS

10~ 10° kg 10'
ky / koy
FIG. 4. Wavenumber spectrum of energy correlation for the high Reynolds
number and Re = 5 cases.

3306 Phys. Fluids, Vol. 29, No. 10, October 1986

)fwgz = T = o T = o0 LYo,

(83)
i

lt:ions at high k,. However, the energy content of the spec-
trum in this range is negligible, and this region falls in the
dissipation range k, > (k,),. Therefore, these oscillations
are of no consequence.

Now, we can compare the results of the two-point the-
ory with predictions of one-point mixing-length theory. Not-
ing the source can be written as

(30)22(1 + 'rli))lkyl

¥ L

-
and multiplying by (k,/k,, ), and integrating both sides of
Eq. (81) over £, and k,, and solving for D * yields

Ls ko 1+7,\
D — T _[in(1 47, 2) _1)( )
(4(1+5)2[n( 0] (L . (83)

5

(gﬂ)k’

This result has identical scalings to the results of one-point
theory, but contains an additional numerical multiplier giv-
en in brackets, which depends on Reynolds number, i.e.,

Even though the additional multiplier is order unity and a
weak function of Reynolds number (this multiplier has nu-
merical value of order 5 for %, values of experimental inter-
est), it is very important to notice that this multiplier is cru-
cial for a description of steady-state turbulence because it
depends on dissipation through the definition of Reynolds
number. Because the transport coefficients, such as diffusi-
vity and conductivity, depend on spectral sum of fluctuation
amplitudes, it is necessary to determine the integration range
of the spectrum (i.e., dissipation range wavenumber) even
for high Reynolds number turbulence. The theories based
only on the inertial range structure of high Reynolds number
turbulence, such as the mixing-length theory and the scale
transformation technique,!! may estimate transport scal-
ings. However, those theories fail to represent the crucial
property of the steady-state condition associated with dissi-
pation.

Having derived the wavenumber spectrum of fluctu-
ations, one can evaluate the spectrum-averaged wavenum-
ber of 7, mode turbulence [i.e., (K, ) = ko, ] by taking
the rms value of the k, wavenumber, i.e.,
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Ekyk§<g12>ky]l/2. (86)

”‘”"‘“E[ SN

The integration of Eq. (86) shows that (k, ), is a weak
function of Reynolds number and has a numerical value of
0.4 (inp,” ' unit) for the 7, value to which the fluid model is
applicable. This typical wavenumber can only be calculated
by using two-point theory. The other theories based on one-
point renormalization or on scale transformation effectively
treat this wavenumber as a free parameter.

Using the predicted diffusion level,Eq. (85), and the
rms wavenumber, the mean-squared radial velocity can be
estimated as

) _ ~
(v,)mssﬁz(m[ln(l + 17.-)]2)

ko,v) (1 + 7 )3/2
X{— .
(L T

5

(87)

The principal results of this section are the calculations
of the two-point energy correlation function, the wavenum-
ber spectrum of the ion pressure fluctuations, and the ion
thermal diffusivity and average wavenumber. To summarize
these results, the energy spectrum dependence on poloidal
wavenumber is given by

CHPE PR

with the spectrum-averaged poloidal wavenumber being
(K6Ps ) rms =0.4. The ion thermal diffusivity is given by

~(T 2 (1+m)2(keps)ms .
Xi—(4[ln(1+77i)])

(o
- L. Ps
The predicted rms values of fluctuating radial velocity, pres-
sure, and potential are

(D ) ems
1+ ; 372 Cs
~(Zinct +m01) (1) koo 2

L,
and

P, > 1+ 7, p,

B) o) (52" 2

(POi)nns (4[n( +7] T L,
and

o= (7).

~ﬁ 2)(1+77i)3/2 Ps
~(Z i1 +901?) (2 T

respectively.

IV. APPLICATIONS: HEAT AND PARTICLE TRANSPORT
IN TOKAMAKS

Having obtained the wavenumber spectrum and fluctu-
ation levels at saturation, we now consider the effect of 7,-
mode turbulence on heat and particle transport in tokamak
experiments.
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A. lon and electron thermal conduction

Recent experimental results from the Alcator-C toka-
mak'? have indicated that in the high-density saturated elec-
tron confinement regime of Ohmically heated discharges, in
which the electron energy confinement time 7z ( «cn) ap-
proaches or exceeds the equilibrium time between electrons
and ions 7,; (o« 1/n?), there is an anomalous ion heat loss
which is apparently related to large %, values (i.e., 7, > 7,
observed). This is also consistent with the observation that
the injection of a large pellet and the subsequent density gra-
dient steepening result in an improvement in energy confine-
ment. There is also an indication of anomalous ion heat con-
ductivity in neutral beam heated, density-clamped
(L-mode) tokamak experiments (e.g., D-III tokamak?). In
this case, beam injection directly heats the ions while simul-
taneously, particle confinement degrades. This results in an
increase in ;. For the L phase of D-III, the result of trans-
port analyses with measured ion temperature profiles (de-
termined by charge exchange recombination spectroscopy)
indicate significant departure from neoclassical ion heat
conductivity values yN*°.?! Also, the radial dependence of y;
isnot related to y;**° (see Ref. 3). It is plausible to explore an
interpretation of this anomaly as %,-mode turbulence driven
ion conduction heat loss.

The anomalous ion thermal conductivity can be calcu-
lated in a straightforward manner, by using the saturation
level of fluctuations. The ion thermal flux g(r) due to ExXB
turbulent convection of perturbed ion pressure is given in
terms of the pressure-potential cross correlation by

q9; = — (ﬁivy‘;» = kz( - iky)(ﬁié;)ky-

Using the decorrelation rate [1_) */(A, )2] givenin Eq. (85),
the integrated radial velocity E in Eq. (87), and the defini-
tion of ion thermal conductivity

1+7,\kZ - D=
q,-<r>=rkz( T”)L—w«m/((A )2).

Using the decorrelation rate [ D */ (A, )?] givenin Eq. (85),
the integrated radial velocity E in Eq. (87), and the defini-
tion of ion thermal conductivity

d (P,
Xi(r)E—‘q,-(r)/( ( 01))’
dr

we find the final form of the anomalous ion thermal conduc-
tivity to be (for 1, > 7, ~1.5).

(88)

(89)

(90)

k rms l i 2
Xiz(ﬁ[ln(l + »,,’_)]2)£__¥_)__(ﬂ) . 91
4 L, T
In dimensional units, y; can be expressed as
=~ —{1In(1 D= - ) pke., 2
p(Glint 4 7P| (LT e, o)

where the mean wavenumber (k,p; ) s ~0.4.

For the case of nearly flat density profiles observed in
the ohmic saturation regime of the Alcator-C tokamak, [7,
~4, T, ~700eV (T;~T,),and By~9T forr = a/2] theion
thermal conductivity due to 7,-mode turbulence is approxi-
mately 4.0 10° cm®/sec. Here, it is very important to note
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that the Reynolds number dependent multiplier (from spec-
trum summation) ((#°/4)[In(1 + 75,)]?) has a numerical
value of 6.4 for given parameters, and this numerical factor is
important for quantitative evaluation of y,, even though this
multiplier is a weak (logarithmic) function of 7,. Also, note
that the scaling y; ~ (1 + %, )? implies that large values of 7,
are unlikely and that L, is a weak function of ion heating
power P, (i.., thermal balance implies L, ~P; '*), so
that T;(r) profiles remain comparatively similar. This is
consistent with observed , (r) profiles from the L-phase re-
gime of the ASDEX tokamak, where 7, <7; < 3.%

Another application of 7;-mode turbulence driven
anomalous ion heat loss has been proposed in the context of a
high current reversed field pinch (RFP) by An et al.>®> They
studied a coupled system of resistive-interchange and ion-
temperature-gradient-driven turbulence, and reported the
possibility of significant ion thermal loss in a high current,
high temperature RFP. This coupled system might also be
relevant to the understanding of anomalous heat transport in
stellarators.

In a tokamak plasma, in addition to (direct) ion heat
loss, there is a possible electron thermal loss associated with
the dissipative trapped electron response (v, <1) to ;-
mode turbulence. In the trapped-electron regime (i.e., v,
<1, v . =Vq./@, ) of tokamak plasmas, the presence of
trapped electrons can result in a heat flux associated with
background fluctuations driven by the 7,-mode turbulence.
Itis well known?* that for v, < 1, the perturbed distribution
for trapped electrons is

7 o (o @=0s[1+7.(E/T. = ¥/2)] 5)’
Te \ w—E,De +iveﬂ',e

(93)
with ®=trapped-particle-orbit-averaged electrostatic po-
tential. The anomalous electron heat flux can be estimated
by using

(Q7)7=((ym?) [#5g, 1), (94)
where (--)7 represents the velocity-space average over
trapped electrons. For a simple estimate of the trapped-elec-
tron contribution, the bounce average can be ignored and the
resulting heat flux is given by

2
VTm 12522065 e
(Q) = — no, (15{2)€ (k3P0 —

e

ed

e

2
(95)

in the high-collisionality limit of the banana regime where w,
&p, €V, and 7,~n,> 1. Using the saturation amplitude of
the radial velocity of the 7,-mode turbulence given by Eq.
(87), the electron heat conductivity is given by

3 2.2
Xez15\/i€”2(% ln(l + 77,))4(—1 +1") ( CsPs )
T

where e is the inverse aspect ratio and the mean wavenumber
has been used to evaluate y, [ (k,0; )ms = 0.4]. Thus, ion-
temperature-gradient-driven turbulence can also result in
increased anomalous electron thermal conduction. How-
ever, while there is certainly a relation between the resulting
x: and y,, they clearly scale quite differently and cannot be
arbitrarily assumed to be comparable. In particular, for
6é,/zt"s/l‘sve < 1’ Xe <Xi'

B. Particle transport
1. lon-mixing driven particle influx

As in the case of the high-density saturation regime of
the Alcator-C tokamak experiment, there have been many
gas-fueled tokamaks that exhibit an anomalous inward den-
sity pinch after puffing of neutral gas into the plasma
chamber. Previously, the theory of the ion-mixing mode”® has
been proposed to explain this anomalous inward particle
flux. The coupling of ion-temperature-gradient-driven
modes to a collisional electron response is thought to be re-
sponsible for this anomaly. However, as discussed previous-
ly, the estimate of the saturation level used in Ref. 5 (invok-
ing the heuristic ambient-gradient-type argument) is
probably incorrect. Here, we reexamine the ion-mixing driv-
en particle transport using the results of the %;-mode turbu-
lence calculation that has been presented in previous sec-
tions.

In the 7,-mode turbulence theory, the electron density
response has been approximated as adiabatic. Because the
density and radial velocity are 90° out of phase in the adiaba-
tic approximation, no particle transport can result. How-
ever, when considering near-edge tokamak plasma where
the anomalous inward particle pinch is significant, finite
electron parallel thermal conductivity due to collisions is not
negligible. Thus, the nonadiabatic part of the electron den-
sity response should be retained. It can provide a phase dif-
ference between 7 and @, thus giving rise to net particle trans-
port.

For the wide range of collisionality regimes that are ap-
propriate for near-edge tokamak parameters, the electron
fluid equations® can be applied to calculate the (electron)
density response. Also, by comparing the radial scale length
of the collisional electron response Af® with nonlinear 7,-
mode radial mixing scale A, , it can be shown that the linear
electron response is an adequate approximation (i.e.,

% <Ay). A laborious but straightforward calculation
shows that the electron density response is given by

L2 fi./ng=A(kw)d, (97)
X (k3P%) cmss (96) where
]
Ako)=" [3X. (0,./0) —%/0?] + i{jo, /0 + [X. + (1+ar)* —§(1 +a7)7. ]| (@,.0,/0°) }) 98)
’ [Gx. —@l/e™) +iG+x. + (1 +ar)?) (0,/0)] ’
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and
@, =(x./0.51) (To/m,v, )k} (99)

with numerical factors of ,{/e = 1.61 and a; =0.71 for
kv, <v.. For the regime where

-G E ) E)

where the overbars indicate evaluation at a mean wavenum-
ber and mean radial scale, the electron density response is
almost adiabatic with a small nonadiabatic (imaginary) part
due to electron thermal conductivity. Although the nonadia-
batic part of electron density response is important for evalu-
ating particle transport, it can be shown that this nonadiaba-
tic electron response in the (@, /0, )>1 regime has little
influence on the basic stability and the radial scale of the ;-
mode. Hence, the resulting particle flux can be quasilinearly
calculated by using the saturated radial velocity level which
has been determined in the context of 77;,-mode turbulence.

Proceeding, the anomalous particle flux, T', from EXB
turbulent convection of the perturbed density is given in
terms of the density-potential cross correlation by

T,=(bg - 1) = = i3 ky (R)s,.

(100)

For the ( 0, /w0, )>1 regime, the particle flux is given by

A e @y 4
I=~2[y. + (1+aT)2](1 - "c )Z ky( * )I'Mz’
178 ky wx
(101)
where
Y 2
nz,z(x_eiil_ﬂ)zm
%(1 +ar)

Using the rms value of the radial velocity given in Eq. (87),
the particle pinch velocity can be calculated (in dimensional
units) and is

r 4 .
(V)= n’ ~ (%[1:1(1 + 17.-)]4)[xe + (14 ap)?]

0
x(1 _ T ) (&\0;51 e (1Emy
i )\m /) y. L\ r
(102)

It should be noticed, however, that the assumptions
kv, <v. and 7, > 77; must be satisfied for consistency and
applicability of the theory (also, 77; > 7, must be satisfied for
instability). But this inflow of particles is due to the off-
diagonal element of flux-force transport relation, the critical
value 7 represents competition between two opposing
forces (namely dn/dr corresponding to particle diffusion,
and dT /dr, which corresponds to the inward pinch).

For the case of near-edge parameters in the Alcator-C
tokamak with 9, =9, ~4, T, = T,~50 eV, and B~9 T, the
pinch velocity is approximately (¥, )~1000 cm/sec.

For the collisional regime where ( @, /0,.)> 1, it is
interesting to note that in addition to an inward flux of parti-
cles, there also exists a heat-pinch effect. Recently, the con-
cept of a heat pinch has been proposed in order to explain the
disparity between thermal diffusivities obtained from heat
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pulse propagation studies and transport analysis. This flow
of electron heat can be determined from the electron pres-
sure-potential cross correlation

:z<ﬁEr 'T)e)s (103)
where f’e =nT, +noTe.Thus,
4 A
03 = Po(Z[In(1 + 7)) [Re + (1 + 7))
1 . 2
w(1— Ne m, 0;512 + 7, 2 (104)
HP ps
Ns m;) x. L, T

Electron heat can flow inward (heat-pinch) provided
7. > 75 with 75° = 3(1 + @ + y./ar)=~2.65. It should
be noticed that the critical 5, value for a heat pinch is greater
than the critical 77, value for a particle pinch because of the
additional contribution from 7.

For the central region of tokamaks that are character-
ized by low collisionality, the dissipative trapped-electron
response®” provides the necessary phase shift between the
density response and fluctuating electrostatic potential for
net particle transport. Using the expression for the perturbed
distribution of trapped electrons in Eq. (93), the anomalous
particle flux at low electron collisionality is given by

FrT:«}Er " ﬁe>2€1/2n05 (kprs )cs |e¢/Te |2

X(w*e(l +%7’e) - Re(w))
(v./¢€) '

Here, the high-collisionality limit of the banana regime, i.e.,
o, Dp, €V, has been assumed. Using the rms value of the
saturation amplitude of the fluctuating radial velocity of the
77;,-mode turbulence given by Eq. (87), the average radial
particle convection speed can be calculated and is

(105)

(V,)TzF,T/no
@,.(1+3n.) — Re(w)
26-3/2

v

€

7 2(1 + 7: 3(k s)rmsp?cs
x[4[n( + 7)1 . L2
(106)

This leads to the conclusion that the resulting particle flux
(for 5, >0) is always directed outward. This prediction of
outward particle flow in low collisionality regimes might of-
fer one possible explanation of the observed improved parti-
cle confinement after pellet injection. Such improvement
would occur when outward particle flow is reduced after
pellet-induced density profile steepening quenches back-
ground 7,-mode turbulence. Although it is not possible to
model a global anomalous particle inflow right after gas
puffing using the ion-mixing process alone, it should be not-
ed that experimental and modeling results indicate that
anomalous particle pinch effects are needed primarily in the
near-edge region rather than the central region.”>?¢ Thus,
ion-mixing turbulence at the edge may be sufficient. Hence,
it is possible that improvements in particle confinement after
pellet injection are due to a reduction in diffusion rather than
an increase in the inward pinch velocity.
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2. Impurity effects on particle transport

Recent experimental results from the ISX-B tokamak
have indicated that in a neutral beam heated plasma con-
taminated with small quantities of a recycling low-Z impuri-
ty, it is possible to produce a Z-mode discharge®” character-
ized by confinement properties which are improved in
comparison to the L-mode discharge. The improved energy
confinement is accompanied by and thought to be due to
peaking of the density profile in the (energy) confinement
zone. The global energy confinement time scaling is modi-
fied from “ISX-B scaling”?*?° by introduction of a density
dependence. Although transport analyses indicate improved
particle confinement in Z-mode discharges, power balance
shows that the improved energy confinement is due primar-
ily to a reduction in electron thermal diffusivity y, .

In order to explain the improved energy confinement in
Z-mode discharge, an extension of the Carreras-Diamond
electron thermal diffusivity>*>’ based on resistive ballooning
turbulence, has been proposed for the regime where w, . > 7,
the linear growth rate. The effect of large w,, is to reduce the
electron thermal diffusivity through diamagnetic modifica-
tions to the resistive ballooning mode. The y, prediction
compares favorably with experimental results.>? However,
even though the proposed large w, extension of the Car-
reras-Diamond y., is consistent with experimental results, it
is also necessary to explain the improvement of particle con-
finement and the resulting steepening of the density gradient
associated with the introduction of a recycling impurity into
the Z-mode discharge.

Here, we propose a mechanism of an ion-mixing driven
inward particle flow enhanced by an inverted edge impurity
density profile due to (sustained) impurity puffing during Z
mode operation. The model of the L to Z phase transition
sequence can thus be described as follows.

(i) For the near-edge region of a beam-heated, density-
clamped plasma (characteristic of L-mode discharges), the
77,-mode can be destabilized by background ion-tempera-
ture-gradient free energy.

(ii) With the introduction of a small amount of low-Z
impurity by puffing, background 7,-mode turbulence is am-
plified by the inverted impurity density profile, providing
larger effective 7, values.

(iii) This impurity enhancement effect changes the sat-
uration amplitude of the background 7;-mode turbulence,
hence the ion-mixing driven inflow increases and the result-
ing ambient density profile steepens.

(iv) With the steepening of the density profile, the back-
ground resistive ballooning turbulence enters the . > ¥ re-
gime, which results in a reduced electron thermal diffusivity.

To describe the impurity effects on the 7;-mode,*® equa-
tions for cold impurity ions are necessary. For simplicity, we
assume that only one impurity species with charge Z and
density n; is present, and that the concentration of this im-
purity is small compared to that of background ions, i.e.,
Zn; &n; S n,. For a long-wavelength 7, mode with cold im-
purity ions (corresponding to the phase velocity regime
Ven,r €V S |@/ky | <), impurity dynamics equa-
tions'*** can be derived using equations for impurity ion
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density and parallel momentum, along with the quasineu-
trality condition

n, =n; + Z#,.
Details of the equations are given in Appendix B.

As in the case of the 7; mode, the energy flow and ba-
lance can be seen clearly by defining energy-like integrals

=1 |4 x(|¢|2+ 29,47), (107)
K fdé) (n01 |v”' ) (108)
ny m
__fds ( of mjlv"") (109)
1————fd3 (no. 2 ’2) (110)

Using the impurity equations, Eqs. (B1)-(B4), it follows
that the total energy of the system evolves according to

—a—E ——(EW+E"+EZ+E’)

ot
o ke B

ni

Roy My

m;

Ny

———#,IV"v”,I -

Oe

This shows that the structure of the energy balance is the

same as in the 77,-mode case, except for an additional sink

due to impurity ions. However, i, for cold impurity ions is

negligible. As described in Sec. III, the required diffusion

and radial correlation length at saturation can be estimated
and are given by

DI~[C(Re)]*(1 + ni/r)‘/zz—’(A;)m”{ (112)

AL~[DL/ki], (113)

respectively, where the additional multiplier of Eq. (85) is
included as C(Re), and the enhancement factor is defined by

A=[14Z(ny/ny) (L/L,y)] " (114)

Here, we assume an inverted impurity density gradient, i.e.,
L,L, <0, and |Z(ny/ny) (L,/L,;)| < 1. Basically, the
ion-temperature gradient drives fluctuations, and ion paral-
lel viscous dissipation sinks the fluctuation energy, but im-
purity ions with an inverted density profile effectively en-
hance 7,, thus amplifying the resulting fluctuations.
Similarly, impurity distributions peaked in the center effec-
tively reduce 7, resulting in lower ftuctuation levels and less
transport. The most important aspect of this enhancement
effect is manifested in the inward particle pinch velocity.
With average pinch velocity for the ion-mixing case Eq.
(102), the impurity-enhanced pinch velocity can be estimat-
ed by

(VY =(V,)- A>. (115)
This enhanced pinch velocity for the edge region of the Z-
mode discharge may be responsible for the observed steepen-
ing of the density profile after impurity puffing.
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V. CONCLUSIONS

For high density regimes of tokamaks in the Ohmic
“saturated” phase and in the presence of auxiliary ion heat-
ing such as neutral beam injection, significant anomalous
energy loss through the ion conduction channel has been
observed. Since the ion-temperature gradient is frequently
steeper than the density gradient for such regimes of toka-
mak operation, ion-temperature-gradient-driven turbulence
is a strong candidate for the explanation of anomalous ion
heat loss in tokamak experiments. Here we have studied ion-
temperature-gradient-driven turbulence using two-point
equations for the energy correlation function and have cal-
culated the wavenumber spectra of the ion pressure fluctu-
ations. In the saturated state, we have obtained the station-
ary spectrum from the steady-state solution of the two-point
energy correlation equation. Hence, we have calculated fluc-
tuation levels and the resulting ion thermal diffusivity using
the spectra. These analytical predictions have been com-
pared with the observed ion thermal diffusivity in the Alca-
tor-C tokamak and are in good agreement.

The principal results of this paper are as follows.

(i) The fluctuation energy correlation function and
fluctuation wavenumber spectra are calculated by solution
of energy-conserving mode-coupling equations. The calcu-
lated wavenumber spectron of ion pressure fluctuations
has the form (P2), ~kg; %% where (P,/Py)ms
~5.7[(1 + 7,)/7]*%0,/L,,. Similarly, the rms fluctuating
radial velocity is

(ijr )rms =~2.3 [ (1 + 7: )/T] 3/2pscs/Ls
and fluctuating density is
(fi/ng) = (e®/T,)=5.7[ (1 + n,)/7]*%,/L,.

Note that the predicted density fluctuation levels are quite
similar to the usual drift-wave turbulence level #/n,
=3p,/L,. Hence, it may be difficult to experimentally dis-
tinguish 7,-mode induced density fluctuations from more
commonplace low-frequency, drift-wave turbulence unless
propagation direction (i.e., ion versus electron) can be re-
solved. While the parameter scalings of these results are
qualitatively consistent with mixing-length estimates, they
have been derived using the calculated fluctuation spectra.
In particular, no assumptions such as k,p, ~ & (1), etc. were
used to obtain the numerical coefficients.

(ii) For 5, > 7,., the ion thermal diffusivity y; is given
by

X = [CR) [ (1 + 1,/7])*(koyp,) ( Pic, /L, ),

where C(Re)=~(w/2)In(1 4 7,). The numerical value of
the ion thermal diffusivity is consistent with the experimen-
tally measured y; for the Alcator-C tokamak (for which
ko,p;=~0.4). Furthermore, for Alcator-C parameters
|C(Re)|*=5, which indicates the importance of the two-
point theory in deriving quantitative predictions for com-
parison with experiment.

(iii) For dissipative trapped electron dynamics (i.e., v,,
<1, vg >@p, ), the electron heat conductivity due to ion-
temperature-gradient-driven turbulence is given by
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3/2f T 4 1+771 3".3/’3
x.=~152¢* (7 In(1+ 1],-)) ( " ) —_VeLsz (k3 p2).
Here € is the inverse aspect ratio. Note that in general, y,
s#y, and that y, is not determined by considerations of pro-
file consistency.

(iv) For collisional electron dynamics (ie., k) vy,
<v,;), the electron response to the ion-temperature-gradi-
ent-driven turbulence results in a particle flux

T,=2n,[C(Re) 1*[ ¥, + (1 + a)?]
X(l—- 7. )(me\o.A51 v, (1+n,~)2p§’
772 mijxe Ln T
where

2
52(&1221)21.77.
iM+ar)

Note that for 5, > 1.77, the flux is inward. For Alcator-C
parameter, (V,) =T,/ny>~1000 cm/sec. Similarly, the
electron thermal flux Q¢ can be derived. For 5, > 2.65, the
electron thermal flux is inward and corresponds to a heat
pinch. However, for collisionless electron dynamics, the par-
ticle flux is always outward. In particular, for v, <1,

T, g%eslz(w*e (1+3n,) — Re(a)))
Vei
s 2147\ Ky P P
2 (L) e
><(4 [In(1 +7%)] : =

Hence, T, decreases with 7;, thus reconciling energy and
particle confinement time behavior during pellet injection
experiments.

(v) The effects of impurity gradients of ion-tempera-
ture-gradient-driven turbulence have been investigated. For
impurity density n,, with scale length L ;, y,—y;A? and
[,—I'A%, where A=[1+ Z(no/no)(L,/L,)] "
Thus impurity distributions peaked on axis heal 7,-mode
turbulence while distributions peaked at the edge enhance it.
In particular, the enhancement of I', may underlie the den-
sity profile steepening observed during the Z mode of the
ISX-B tokamak.

In this paper, a sheared slab model of ion-temperature-
gradient-drive turbulence was used in order to elucidate the
basic physics and phenomenological consequences in a sim-
ple and clear fashion. Although little change in the basic
conclusions is to be expected, the theory can be applied to the
toroidal branch of the 7; mode using the large-» ballooning
representation. This will be discussed in a future publication.
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APPENDIX A: THE FOURIER TRANSFORM OF THE RADIALLY AVERAGED CORRELATION LIFETIME

Here, we provide the details of the derivation of Eq. (83),

F(k k)

AX . -
_—ALJ‘ dx'fdy—fdz—e_'kyy:‘k'z‘ Ta(X_y_,z2_)
x 0

Ax ,
= —LJ dx_fdy_fdz_e—k’y‘—'k"‘ln[( )+C[(1+a)k Lo+ kot kg,z’-_]].
x JO a+1
(A1)
Transforming to a polar coordinate system given by
=[x /8], pPP=CkLy* +k2Z ), y_=(plkyNC)sinb, z_ = (p/ko,JC) cosb, (A2)
this yields
2 1- k, k
F(k ,kz)=( )l pdpf d0exp{—1[ £ ( sin @ + — 0050)”
g kOkaZC \/_ kOy ka
X [V1 = (& +p5) — &>+ p% cos™'(YaZ + p1) ], (A3)
where a’=a/(a + 1). Using Jacobi-Anger expansion,? i.e.,
k, = k
d6exp< zp[\/—[( )smB +( )cos&”"‘): D (—i)"'(21r)J,,,( 2P )Jm ( k.p ), (A4)
A o, i kT ) " Nk T
and using Neumann’s addition theorem for Bessel functions, i.e.,
B & . k k,
Jo< p)z 3 (—z)"'Jm( > p)Jm( o), (AS)
\[6- m= —e kOy\/—C’—v ka\/—C-
where 8 = \[(k,/k,,)? + (k,/ko, )%, we then arrive at the expression given in Eq. (83),
4 1—a
Fik, k) =( u ) | Pdpfo( 2 p) VT @ 557 — a5 cos~ (ya 57 . (A6)
Ckoy ko, / Jo JC
For the large Reynolds number regime, Eq. (A6) can be approximated by
4 1
F(ky,k,)=( 7 )f pdp Jo( Bp) [NT=p? — p cos™'p]. (A7)
Oy ™0z o
Integrating over &, yields the polodial wavenumber spectrum given in Eq. (84)
4 k
= () () |- #(2)) a9
kOy ky kOy
r
APPENDIX B: FLUID EQUATIONS FOR IMPURITY d . - . . m; .
GRADIENT EFFECTS g O FOXVE Vo —p Wity = —Z = V4, (B3)
We outline the derivation of model equations of impuri- 9 R _ 1+, r
ty gradient effects n,-mode turbulence discussed in Sec. Eﬁi +6 XVé-Vp, +( ) I V4= — "'Vu Djjis
IV B. The fluid model consists of equations for background 4 " (B4)

ions, Egs. (2)-(5), and equations for cold impurity ions.
Using the same normalization as in Sec. II and the quasineu-

trality condition gives
1 Zn01 ( )
v? v
) Pt L, ) o+

Roe

+ 7
-

a (1 _
at ng,
x Noi

nOe

R,

(&

V,(V23) — L b xV$ -V, (V24)

R,

Ao,

ni

(B1)

noi o - "
+— V¥ yI=0,
no.

9. . - N
=B + b XV Vi, — 1, Vi), =

ot - v|| & - v[lﬁi!

(B2)
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where ny;, n,,, and n,; are background ion density, electron
density, and impurity density, respectively.
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